Review: Limit Techniques - 10/14/16

1 Squeeze Theorem

Theorem 1.0.1 If $f(x) \leq g(x)$ when x is near a (except possibly at a), and the limits of f and g both exist when x approaches a, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

Theorem 1.0.2 Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.

Example 1.0.3 Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} x^{2} \sin (1 / x)$. First we need to find functions that are always smaller and bigger than this one. Let's start with $\sin (1 / x)$. We know that $-1 \leq$ $\sin (x) \leq 1$, no matter what x we plug in. So if we plug in $\frac{1}{x}$, this will still hold, so we have $-1 \leq \sin (1 / x) \leq 1$. Our function is actually $x^{2} \sin (1 / x)$, so we should multiply through by x^{2} to get $-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2} . \lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$. Then by the Squeeze Theorem, $\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0$.

Example 1.0.4 Let $f(x)$ be a function such that $4 x-9 \leq f(x) \leq x^{2}-4 x+7$ for $x \geq 0$. What is $\lim _{x \rightarrow 4} f(x)$? Let's check the limits on either side! $\lim _{x \rightarrow 4} 4 x-9=\lim _{x \rightarrow 4} x^{2}-4 x+7=7$, so $\lim _{x \rightarrow 4} f(x)=7$. In the graph below, we have $4 x-9$ and $x^{2}-4 x+7 . f(x)$ could be any function that stays between those two.

2 Rationalizing Functions

Example 2.0.5 Evaluate $\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}$. We want to get rid of the square root. Remember that $(a+b)(a-b)=a^{2}-b^{2}$. So let's multiply our function by a fancy 1 , namely $\frac{\sqrt{x}+4}{\sqrt{x}+4}$. This is called the conjugate of $\sqrt{x}-4$ because it gets rid of the square root. When we do this, we have $\lim _{x \rightarrow 16} \frac{x-16}{(x-16)(\sqrt{x}+4)}$. Since we're taking the limit, we can cancel the $x-16$ to get $\lim _{x \rightarrow 16} \frac{1}{\sqrt{x}+4}=\frac{1}{8}$.

Example 2.0.6 Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}-9}{\sqrt{x}-\sqrt{3}}$. Again, we want to multiply by the conjugate, so we have

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{\sqrt{x}-\sqrt{3}} \cdot \frac{\sqrt{x}+\sqrt{3}}{\sqrt{x}+\sqrt{3}} & =\lim _{x \rightarrow 3} \frac{(x+3)(x-3)(\sqrt{x}+\sqrt{3})}{x-3} \\
& =\lim _{x \rightarrow 3}(x+3)(\sqrt{x}+\sqrt{3}) \\
& =6(\sqrt{3}+\sqrt{3}) \\
& =12 \sqrt{3} .
\end{aligned}
$$

Practice Problems

See the practice problems we did in class, also linked on the website.

